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Abstract
Vector-borne diseases are progressively spreading in a growing number of countries,
and it has the potential to invade new areas and habitats. From the dynamical perspec-
tive, the spatial–temporal interaction of models that try to adjust to such events is rich
and challenging. The first challenge is to address the dynamics of vectors (very fast and
local) and the dynamics of humans (very heterogeneous and non-local). The objective
of this work is to use the well-known Ross–Macdonald models, identifying different
time scales, incorporating human spatial movements and estimate in a suitable way
the parameters. We will concentrate on a practical example, a simplified space model,
and apply it to dengue spread in the state of Rio de Janeiro, Brazil.

Keywords Vector-borne diseases · Time-scale analysis · Human mobility · Parameter
fitting · Dengue

1 Introduction

Infectious diseases are currently a major cause of concern due to its high potential of
dissemination (Peixoto et al. 2020). Vector-borne diseases may spread more slowly
than those of direct transmission; however, due to lack of vaccination, basic sanitation,
climate changes, and with increasing human mobility, such diseases are spreading
and appearing in new regions, where the climate favors the proliferation of vectors
(Gubler 2002; Liang et al. 2015; Bomfim et al. 2020). In addition, and considering
that mosquitoes do not travel long distances, the human population is carrying the
disease to places where mosquitoes are susceptible, which may lead to changes of
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the disease dynamics and increase the population heterogeneity (Iggidr et al. 2017).
Mosquitoes of the speciesAedes aegypti andAedes albopictus are themost responsible
for virus transmission, such as dengue, Zika, Chikungunya and Yellow Fever (Liu-
Helmersson et al. 2016; Kraemer et al. 2015). For instance, we may cite locations
in Portugal, France and Italy, where cases of dengue and Chikungunya have already
been recorded, the United States with cases of dengue fever and Zika virus, and Brazil,
where dengue has been endemic for many years (Wang et al. 2017; dos Santos et al.
2018; Amaku et al. 2016; Massad et al. 2008; Burattini et al. 2016; Iggidr et al. 2017).

Dengue is currently one of the human viral diseases with the highest number of
cases, it is transmitted through the bite of female mosquitoes of the genus Aedes,
which are an arbovirus of the family Flaviviridae, genus Flavivirus. It is estimated
to be endemic in more than 100 countries, and approximately half of the world’s
population is at risk of contracting the disease (Liu-Helmersson et al. 2016; Kraemer
et al. 2015; Bhatt et al. 2013; Rodriguez-Barraquer et al. 2011). The usual control
measures are related to mosquitoes’ population with the use of insecticides in addition
to public awareness campaigns, also the Wolbachia bacteria has been investigated as
a possibility to prevent the vector from transmitting the virus (King et al. 2018) and
currently some vaccines have been tested or are in testing phase (Precioso et al. 2015;
Boccia et al. 2014).

Mathematical models applied to describe indirectly transmitted infectious diseases
must couple the dynamics of hosts and vectors, whose parameters have different time
scales, mosquitoes have a life cycle of days while the human life cycle is years.
Studies with spatial networks, or meta-populations, provide a way to understand the
interactions between individuals in different scales, being a powerful tool to understand
the characteristics of transmission in communities, regions and countries incorporating
spatial heterogeneity (Massad et al. 2008; Barmak et al. 2011; Iggidr et al. 2017; Kiss
et al. 2006; Newman 2003; Brockmann et al. 2009). If the goal is to fit themodel to real
data, it is necessary to deal with missing information, in particular for the mosquitoes’
population, besides having to take into account the different time scales of vectors and
hosts (Rocha et al. 2013; Souza 2014).

In this work, we consider a host-vector disease compartmental model that divides
the host population into susceptible S, infected I and recovered R, coupled with sus-
ceptible Sm and infected mosquitoes Im . This model depends on parameters such as
the mosquitoes mortality rate and the total vector population, which are very difficult
to measure. From this model we do the time-scale separation of hosts and vectors. As
a consequence, the order of the model is reduced as long as the mosquitoes equations
do not appear explicitly in the model and only one of the remaining parameters will
depend on the mosquitoes mortality rate. Finally, we incorporate human spatial move-
ments, considering mobility between cities two to two.We adjust this model to dengue
incidence data from cities which were chosen based on previous evidence of human
mobility related to disease spread (dos Santos et al. 2018). Thereby, our main purpose
is to show that this model provides a good approximation of the number of infected
individuals when fitting the nonlinear incidence rate equations to dengue incidence
data, as well as the possibility of obtaining parameters simulating human movement
between two cities.
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First, our approach will be deterministic. Secondly, being more precise, the goal
is to consider the effects of the spatial dynamics into the Ross–Macdonald models
and use it to fit the real data. This can be done either by a continuous space domain,
which in turn will give us partial differential equations, local or non-local, or consider
discrete networks in space, which will provide a system of ordinary differential equa-
tions (ODE). There are advantages and disadvantages to both approaches. From the
mathematical point of view, there are several theoretical challenges in the continuous
model, in particular if non-local operators are considered, even if one proves that the
second approach can be viewed as an approximation of the first and that the dynamics
must somehow converge. The second approach can more easily be used to fit the real
data, in view of it is always discrete in nature. Since, in this work, we are interested in
concrete data and fit the dynamics, we will concentrate on the second model. For the
continuous model, one can refer to Ducrot et al. (2017); Pereira et al. (2020) where
similar approaches were considered, and rigorous results were obtained.

The paper is organized as follows. First, we specify the local dynamics that will
describe the disease transmission in each city, we also identify the small parameter that
will be used. Next, we set up the network dynamic, introducing a diffusion operator.
With these two ingredients, for completeness, we show a formal expansion that reflects
the general ODE singular perturbation results shown in details in Pereira et al. (2020).
Finally, we can estimate our parameters using a network found to represent the initial
spread of the disease in the State of Rio de Janeiro, Brazil, and present our results.

2 Setting theModel

We consider a model, named SIRSm Im , following the frequency-dependent structure
of the well-known Ross–Macdonald models. The total host population Nh is divided
into susceptible S, infected I and recovered R and it is coupled with the compartments
of susceptible Sm and infected Im mosquitoes with total population given by Nm . The
interaction dynamics between the compartments is described through the system of
ordinary differential equations (ODEs):

dS/dt = μh(Nh − S) − βSIm/Nm

dI/dt = βSIm/Nm − (γ + μh)I
dR/dt = γ I − μh R
dSm/dt = μm(Nm − Sm) − �Sm I/Nh

dIm/dt = �Sm I/Nh − μm Im

(1)

In this model, β denotes the average number of contacts enough to receive infection
which hosts make with mosquitoes per unit time. Precisely, β is a product of two
factors, the biting rate, and the probability that a bite transmits infection from vector
to human. In this way, a susceptible human S, receives β effective mosquitoes bites, of
which a fraction Im/Nm is with an infected mosquito so, the number of new infected
humans, in unit time, is βSIm/Nm . Reciprocally, a susceptible mosquito Sm makes �

effective contacts with humans, where a fraction I/Nh is with and infected individual.
The number of new infected mosquitoes, in unit time, is �Sm I/Nh (Brauer et al.
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2016). The parameter γ is the human recovery rate, and the parametersμh andμm are
the birth/mortality rate, respectively, of humans and mosquitoes; both are calculated
by the inverse of life expectancy.

As we will work with a short period of time (less than one year), it is possible
to suppose that populations remain constant; that is, birth and mortality rates are
equal, so Nh(t) = S(t) + I (t) + R(t) and Nm(t) = Sm(t) + Im(t). Consequently,
R(t) = Nh(t) − S(t) − I (t) and Sm(t) = Nm(t) − Im(t), then we can work with the
equivalent reduced system:

dS/dt = μh(Nh − S) − βSIm/Nm

dI/dt = βSIm/Nm − (γ + μh)I
dIm/dt = �(Nm − Im)I/Nh − μm Im

(2)

Considering that the life expectancy of an adult female mosquito is about 10 days
(Liu-Helmersson et al. 2016), and a human life expectancy of 73 years (2010 Brazilian
Census), the value of μm = 1/10 (days) is bigger than the corresponding parameter
of humans μh = 1/(365× 73) (days) (Rocha et al. 2013). To describe the time-scale
separation, we add the singular term 1/ε as done in Rocha et al. (2013); Souza (2014)
and Pereira et al. (2020). Defining μm = μm/ε and � := �/ε, with μm in the time
scale of μh , and setting up μm := μh , we obtain ε = μh/μm , then replacing these
parameters in (2), follows that

dS/dt = μh(Nh − S) − βSIm/Nm

dI/dt = βSIm/Nm − (γ + μh)I
εdIm/dt = �(Nm − Im)I/Nh − μm Im

(3)

As in Rocha et al. (2013); Pereira et al. (2020), we establish a system where the vector
population dynamics is much faster than hosts one as ε ≈ 0. At ε = 0, (see (Pereira
et al. 2020) for convergence), Im(t) can be obtained as a function of I (t) at any time
t :

Im(t) = �I (t)Nm

�I (t) + μmNh
(4)

Replacing (4) into the equations of System (3), give us a new equivalent system with
a nonlinear incidence rate without the mosquitoes equation:

dS

dt
= μh(Nh − S) − β�I S

�I + μmNh
dI

dt
= β�I S

�I + μmNh
− (γ + μh)I

(5)

2.1 Spatial Dynamics

The SIRSm Im model characterizes the dynamics of a disease within a population. If
the purpose is to describe its transmission dynamics more realistically, it is necessary
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to consider a mobility network that includes interaction between populations (Iggidr
et al. 2017; Newman 2003). Let Nhr be the total human population that is registered
in node r = 1, 2, . . . , M , so the disease dynamics in each location is described by the
Sr Ir Rr Smr Imr model. The parameter drs corresponds to the mobility rate from the
population r to s per unit time (Iggidr et al. 2017).

To include spatial dynamics in model (1), we must consider the inflow and out-
flow of humans in each compartment. In order to avoid adding more complexity to
the model, we consider two hypotheses. The first one, is that human movement is
the same in all classes. This is reasonable since it is estimated that only 25% of the
infected manifests any level of the disease severity, the others 75% are asymptomatic
or with mild infections and keep moving around carrying the virus (Bhatt et al. 2013).
This contributes to transmit the virus to susceptible mosquitoes from other locations.
Second, we do not consider the movement of vectors performed by humans, and as
mosquitoes do not move large distances (Bomfim et al. 2020), their respective com-
partments remain unchanged. The system of equations representing human mobility
between cities r and s, r �= s, is given by:

dSr/dt = μh(Nhr − Sr ) − βr Sr Imr /Nmr +
∑

r �=s

(dsrSs − drsSr )

dIr/dt = βr Sr Imr /Nmr − (γ + μh)Ir +
∑

r �=s

(dsr Is − drs Ir )

dRr/dt = γ Ir − μh Rr +
∑

r �=s

(dsrRs − drsRr )

dSmr /dt = μmr (Nmr − Smr ) − �r Smr Ir/Nhr

dImr /dt = �r Smr Ir/Nhr − μmr Imr

(6)

with initial conditions Sr (0) ≥ 0, Ir (0) ≥ 0, Rr (0) ≥ 0, Smr (0) ≥ 0, Imr (0) ≥
0. Here, we suppose that parameters are different for each location except the host
birth/mortality rate μh and the recovery rate γ . The total host population in each area
is given by Nhr = Sr + Ir + Rr , so

dNhr/dt = dSr/dt + dIr/dt + dRr/dt

= μh(Nhr − Sr − Ir − Rr ) +
∑

r �=s

(dsr(Ss + Is + Rs) − drs(Sr + Ir + Rr ))

=
∑

r �=s

(dsrNhs − drsNhr)

Similarly as done to obtain (5) and considering the spatial dynamics in (6), we
accomplish the Sr Ir model:

dSr
dt

= μh(Nhr − Sr ) − βr�r Ir Sr
�r Ir + μmr Nhr

+
∑

r �=s

(dsrSs − drsSr )
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dIr
dt

= βr�r Ir Sr
�r Ir + μmr Nhr

− (γ + μh)Ir +
∑

r �=s

(dsr Is − drs Ir ) (7)

This is a nonlinear incidence rate systemwith populations interaction. Thedynamics
of this kind of modified equations was already studied for some authors. Souza (2014)
showed that for the SIRSImodelwith fast vector dynamics, the equilibria are preserved
by the asymptotic approximation, and the global stability dynamics is consistent with
the global stability dynamics of the full model. Hethcote andVan denDriessche (1991)
analyzed the SEIRS epidemiological model with nonlinear incidence rates. They used
the general form βg(I )S where g(I ) = (I p)/(1 + α I q), p, q > 0, α ≥ 0 and their
results showed that for p = q = 1 the usual epidemic patterns holds; that is, below the
threshold (= 1), the disease dies out and above the thresholds the disease approach to
endemic equilibrium independent of α.

Besides the nonlinear incidence rate, our system includes human mobility, so the
proof of the global stability is non-trivial. However, we show through numerical sim-
ulations that the number of infected individuals persists at a positive level for our
estimated parameters; that is, when R0 > 1, the disease tends to an endemic state (see
Appendix 6).

2.2 Asymptotic Expansion

Here, a power series expansion is used to analyze the asymptotic behavior with respect
to parameter ε > 0 of the perturbed System (3) with spatial dynamics as in (6). In
order to do that, let S, I and Im be vectorial functions whose coordinates are denoted,
respectively, by Sr , Ir and Imr for r = 1, 2, ..., M . We consider the following singular
perturbed system of ODEs:

dSr/dt = μh(Nhr − Sr ) − βr Sr Imr /Nmr +
∑

r �=s

(dsrSs − drsSr )

dIr/dt = βr Sr Imr /Nmr − (γ + μh)Ir +
∑

r �=s

(dsr Is − drs Ir )

εdImr /dt = �r (Nmr − Imr )Ir/Nhr − μmr Imr

(8)

We expand the solutions with respect to the small parameter ε assuming that the
vectorial functions S, I and Im given by (8) satisfy

S = S0 + εS1 + ε2S2 + · · · I = I0 + εI1 + ε2I2 + · · ·

and

Im = Im0 + εIm1 + ε2Im2 . . .

Thus, the time derivatives themselves set

dS
dt

= dS0
dt

+ ε
dS1
dt

+ · · · dI
dt

= dI0
dt

+ ε
dI1
dt

+ · · ·
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and

dIm
dt

= dIm0

dt
+ ε

dIm1

dt
+ · · ·

If we plug these expressions in System (8), after some computations, the following
equations are obtained at ε = 0:

dSr 0/dt =
⎡

⎣μh(Nhr − Sr 0) − βr Sr 0 Imr 0/Nmr +
∑

r �=s

(dsrSs0 − drsSr 0)

⎤

⎦

dIr 0/dt =
⎡

⎣βr Sr 0 Imr 0/Nmr − (γ + μh)Ir 0 +
∑

r �=s

(dsr Is0 − drs Ir 0)

⎤

⎦

0 = [
�r (Nmr − Imr 0)Ir 0/Nhr − μmr Imr 0

]
.

Hence, we get as in (4) that

Imr0
= �r Ir0Nmr

�r Ir0 + μmr Nhr

and then, we deduce the reduced system

dSr 0
dt

= μh(Nhr − Sr 0) − βr�r Ir 0Sr 0
�r Ir0 + μmr Nhr

+
∑

r �=s

(dsrSs0 − drsSr 0)

dIr 0
dt

= βr�r Ir 0Sr 0
�r Ir0 + μmr Nhr

− (γ + μh)Ir 0 +
∑

r �=s

(dsr Is0 − drs Ir 0)

with initial condition Sr 0(0) ≥ 0 and Ir 0(0) ≥ 0 as in (7) and without the mosquitoes
equations. We conclude that the solutions S and I of System (8) can be approximated
by solutions of the limit System (7). Indeed, it follows from our previous work (Pereira
et al. 2020) (see also (Rocha et al. 2013; Souza 2014) and [ Hartmann (2008), Theorem
4.4]) that the convergence is uniform in finite time with order O(ε).

3 Parameter Estimation

We have System (7) with nonlinear incidence rate, which does not depend on the
mosquitoes equations and coupled with spatial dynamics. Estimating parameters is
a challenging task, especially in the case of fitting the model for two or more time
series simultaneously, and also taking into account that the parameters need to have
real meaning for the disease being applied.
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For deterministicmodels, the fitting consists in finding themodel trajectory that best
represent the data. When estimating one or two parameters, it is possible to search in
all range of the parameters for the values that provides the optimum global. However,
when dealing with many parameters, the search will be computationally expensive
and not viable.

In this work, we employed the pomp package implemented inR language described
in King et al. (2015), in order to obtain the values for: βr , �r , μmr , drs , γ and the
initial conditions of each location Sr (0) and Ir (0).We used the algorithm of the section
related to Fitting deterministic dynamical epidemiological models to data, which can
be found at King (2022). It was adapted to fit the solution Ir from the Sr Ir model to
dengue incidence data of Brazilian cities which present evidence of human mobility
acting as a virus spreading factor (dos Santos et al. 2018).

The adjustment is done using the least squares method. First, we set up a function
to calculate the sum of the squared errors (King 2022), which is determined by the
difference between the solutions Ir obtained with the deterministic model and dengue
incidence data from each respective city. This is done for two time series simultane-
ously. After setting up the error function which is the objective function, we define
our global parameters and the parameters that need to be estimated. To each parameter
and variable can be given a lower and/or upper bound, then it is necessary to start with
an initial value which satisfies the constraints and from this point, the optimization
algorithm uses the function values and gradients to search the parameter space for the
value that minimizes the objective function (King 2022). As it is an ill-posed problem,
we run many simulations with different initial conditions. Then, we selected the one
which returns the minimum sum of the squared errors.

Considering that there are errors when the incidence cases are recorded, we can
suppose these errors, in each observation, are normally distributed, and then it is
possible to build an interval of variation for the observations.Here, itwouldbedesirable
to build a profile likelihood for each parameter by fixing the values obtained with the
optimization algorithm and then varying one parameter per time but dealingwithmany
parameters it becomes not reasonable. When using the normal distribution, the mean
is the model prediction and the variance can be estimated or defined (King 2022).

The model with time-scale separation and considering mobility among two cities
is given by:

dS1/dt = μh(Nh1 − S1) − β1�1 I1S1
�1 I1 + μm1Nh1

+ d21S2 − d12S1

dI1/dt = β1�1 I1S1
�1 I1 + μm1Nh1

− (γ + μh)I1 + d21 I2 − d12 I1

dS2/dt = μh(Nh2 − S2) − β2�2 I2S2
�2 I2 + μm2Nh2

+ d12S1 − d21S2

dI2/dt = β2�2 I2S2
�2 I2 + μm2Nh2

− (γ + μh)I2 + d12 I1 − d21 I2

(9)
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where

dNh1/dt = d21Nh2 − d12Nh1
dNh2/dt = d12Nh1 − d21Nh2

For System (9), we calculate the basic reproduction number R0 through the next
generation matrix method (van den Driessche 2017). For vector-borne diseases, the
value of R0 means the number of new infectives per infective, per generation. The
compartments with infected are I1 and I2. In order to work with the disease free equi-
librium (S1, I1, S2, I2) = (Nh1, 0, Nh2 , 0), it is necessary to consider the restriction
d21 = d12(Nh1/Nh2), so the populations remains constant even considering spatial
dynamics. See that such condition is reasonable for short data periods.

The matrix F containing the appearance rates of new infections, and the matrix V
with the other transitions among the compartments are, respectively:

F =
⎡

⎣
β1�1
μm1

d21

d12
β2�2
μm2

⎤

⎦ and V =
[

(γ + μh + d12) 0
0 γ + μh + d21

]
. (10)

The R0 = ρ(FV−1), is given by:

R0 = λ2γ12 + λ1γ21

2γ12γ21
+

√
(λ2γ12 + λ1γ21)2 − 4(γ12γ21)(λ1λ2 − d12d21)

2γ12γ21
(11)

where λi = βi�i/μmi and γi j = γ + μh + di j , i, j = 1, 2, i �= j .
In Appendix 6.1, we also show the R0 expression for System (1) without human

mobility.

3.1 Data

We work with dengue data obtained from Brazil’s Information System for Notifiable
Diseases (SINAN) (da Saúde/SVS DATASUS 2020). Dengue time series only pro-
vide the amount of humans infected weekly. The year 2008 was chosen for results
simulation due to the high number of reported cases in Rio de Janeiro state and by the
incidence to present a well-defined qualitative behavior. We only consider the period
from the 1st week to the 35th week of 2008. The number of reported cases per week
(incidence per week) in Rio de Janeiro city, Duque de Caxias, Itaboraí, Niterói and
Nova Iguaçu is shown in Fig. 1. It will be used to fit the Ir solutions from the Model
(9).

These cities were chosen among all others due to the evidence of human mobility
acting as a virus spread factor as discussed in dos Santos et al. (2018), which used the
ideas of Saba et al. (2014); Brockmann and Helbing (2013) to identify an effective
network that explains the epidemic in Rio de Janeiro. Notifications are made in basic
health units and are recorded manually, so there may be errors when recording data
computationally, another discrepancy may be caused by notifications accumulated in
weeks with holidays and only recorded in the following week.
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Fig. 1 Incidence of dengue in Duque de Caxias, Itaboraí, Niterói, Nova Iguaçu and Rio de Janeiro, in the
period from the 1st week of 2008 to the 35th week of 2008

Table 1 The total population
size of each city Nhi .
Information from the 2010
Brazilian Census

Cities Population Nhi

Duque de Caxias 855048

Itaboraí 218008

Niterói 487562

Nova Iguaçu 796257

Rio de Janeiro 6320446

The fixed parameters are the total population of each city presented in Table 1,
and the birth/mortality rate of humans, calculate as the inverse of the life expectancy
(73 years for Brazil in 2010). The second is considered the same for all cities, and
both were obtained from the 2010 Brazilian Census. The other parameters need to be
estimated.

4 Results

Regarding the initial values of the parameters, wewill consider that the initial suscepti-
ble population is 98%of the total population of each city, Sr (0) = 0.98×Nhr and Ir (0)
ranges from 1 to 10. The human recovery rate γ is initially one week since the data
are incidence per week. The mobility parameter d12 start with the value d12 = 0.0001,
while its result can ranges from 0 to 0.02, restriction imposed due to the population
of Rio de Janeiro being very dense compared to the other cities, so d21 is calculated
by d21 = d12(Nh1/Nh2).

As a consequence of considering System (9) with time scale separation, we do not
have vectors’ equations, and recalling that by definition: �r = ε�r and μm = εμm ,
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Fig. 2 Result of fitting equations I1 and I2 from Model 9 to dengue incidence data from Rio de Janeiro
and Niterói, respectively, according to the parameters of Table 2. In black dots, is the incidence per week,
the solid lines (in red) show the results obtained from the model and the region (filled with red) is the 95%
confidence interval (CI) for the variation of the observations (color figure online)

from the nonlinear incidence terms in (9), result that

βr (ε�r )Ir Sr
(ε�r )Ir + (εμm)Nhr

= βr�r Ir Sr
�r Ir + μmr Nhr

.

In fact, only μmr is an intrinsic parameter of mosquitoes present in the system, being
necessary to make an initial assumption for its value. In addition, it is consistent to
suppose this mortality rate may vary in different regions, as there may be distinct
strategies to combat vectors in each city. Let us consider initially a life expectancy of
10 days, so μmr = 7/10 (weeks) Liu-Helmersson et al. (2016). Finally, we scan for
the initial values of the rates βr and �r in the range [0.5, 10.0] and then return the
fitting that results in the smallest quadratic error.

These are initial guesses for the parameter’s values, the result achieved may be
outside these ranges. In the optimization algorithm we only define the upper limit
for d12, and the lower limit as 0 for all parameters. Notice, that in each respective
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Fig. 3 Result of fitting equations I1 and I2 fromModel 9 to dengue incidence data from Rio de Janeiro and
Duque de Caxias, respectively, according to the parameters of Table 2. Black dots show the incidence per
week, the solid lines (in red) show the results obtained from the model, and the region (filled with red) is
the 95% confidence interval (CI) for the variation of the observations (color figure online)

simulation, the value of 12 parameters are estimated. It is not computationally feasible
to scan a range for all initial values, so it is only done for Ir (0), βr and �r .

The results obtained are presented in Table 2 for each pair of cities. In the sequence,
the figures containing the respective adjustments. From Figs. 2, 3, 4, 5 and 6, the
incidence is the number of new cases recorded per week (black dots), the solid lines
(in red) are the average of infected individuals obtained with the deterministic model
and the region (filled with red) is the 95% confidence interval (CI) for the variation of
the observations.

5 Discussion

From the SIRSm Im vector-host model, we made a separation of time scales, and the
system was reduced to an equivalent one with nonlinear incidence rate independent
of the mosquitoes’ equations. Then, we added human spatial dynamics to this new
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Fig. 4 Result of fitting equations I1 and I2 from Model 9 to dengue incidence data from Rio de Janeiro
and Nova Iguaçu, respectively, according to the parameters of Table 2. Black dots show the incidence per
week, the solid lines (in red) show the results obtained from the model, and the region (filled with red) is
the 95% confidence interval (CI) for the variation of the observations (color figure online)

system named Sr Ir . The parameters present in the modified equations depend on
the respective parameters of humans, with only one intrinsic of mosquitoes (μm),
whereas the full SI RSm Im model contains two parameters related to vectors (μm and
Nm), which makes it more difficult to fit the model to data due to the lack of available
information about mosquitoes.

This reduction contributes to a better estimation of parameters, as long as the
mosquitoes mortality rate is easier to be estimated than its population size. The first
one is possible to be measured clinically in laboratories, and the second, in addition
to not being possible to have a reliable measurement, its proportion related to the host
population, may vary from city to city.

We made some considerations about the initial value of the parameters in order to
apply an algorithm to fit the model to dengue data of some pairs of cities in Rio de
Janeiro state. As it is possible to see from the incidence data (Fig. 1), Rio de Janeiro
and Niterói are the first cities to present a consecutive increase in the number of cases
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Fig. 5 Result of fitting equations I1 and I2 from Model 9 to dengue incidence data from Duque de Caxias
and Nova Iguaçu, respectively, according to the parameters of Table 2. Black dots show the incidence per
week, the solid lines (in red) show the results obtained from the model, and the region (filled with red) is
the 95% confidence interval (CI) for the variation of the observations (color figure online)

before the 10th epidemiological week, while to the other cities the rise occurred a
bit later. These two locations work as focus of the disease, and according to the real
distance between them, it makes sense that the flow of people occurs among Rio de
Janeiro and Niterói; Rio de Janeiro, Duque de Caxias and Nova Iguaçu; and between
Niterói and Itaboraí. The distance among these pairs of cities is less than 50km and
there are daily flows in high or low frequency. Figure 9 in Appendix 6.2 shows the
human commuting for work or study in Rio de Janeiro, 2010.

Our results (Figs. 2, 3, 4, 5, and 6) showed that the reduced model is capable
of properly reproducing the number of infected individuals for all pairs of cities. For
Nova Iguaçu and Itaboraí, the fitting did not reach the peak of the outbreaks. A possible
explanation for these two cities is that the peak value differs greatly from the incidence
of the peak previous week, which may occur due to notifications being accumulated
from one week to another. The fit also obtained reasonable values for the parameters
(Table 2), including the ones simulating mobility.
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Fig. 6 Result of fitting equations I1 and I2 from Model 9 to dengue incidence data from Niterói e Itaboraí,
respectively, according to the parameters of Table 2. Black dots show the incidence per week, the solid lines
(in red) show the results obtained from the model, and the region (filled with red) is the 95% confidence
interval (CI) for the variation of the observations (color figure online)

The parameters βr and �r vary from 1.91 to 4.09 (weeks) and μmr has its value
in the range [0.512 : 1.856] (weeks). The basic reproduction number R0 ≈ 1.1 is
within the expected range, although it is slightly lower than what is generally found
in the literature. A possible cause is the influence of mobility terms di j , which could
increase the R0 value by addingmore cities in the spatial dynamics. Although, it is also
important to mention the R0 depends on which method is used to obtain its expression
and how large is the data series being fitted. Themore information is used in the fitting,
the smaller is the estimated value of R0 (see Sanches and Massad 2016).

For comparison purposes, Appendix 6.1 was included containing the results of
fitting the data to Model 1 without human mobility, that is, considering that each
population is isolated and there is no flow of people leaving or entering each city. In
these simulations, in addition to vary the initial conditions, it was necessary to analyze
different mosquito population sizes, as the real proportion of vectors compared to
human population from each location is not known. We tested the proportion Nm =
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Nh , Nm = 2Nh , Nm = 3Nh and Nm = 4Nh , which required a greater computational
effort.

Although the adjustments were similar, it is notable that the fitting of the Sr Ir model
got closer to the peak of the outbreaks. The R0 was almost the same with both models,
just slightly bigger in the one without the spatial dynamics. This was expected since
in the Sr Ir model, we only take into account the movement between two cities. A
much larger mobility network would increase the R0 value since it depends on the
parameters drs . About the parameters βr , �r and μmr , the values obtained with the
two models were totally different (see Table 2 and Table 3). We conclude that these
parameters of Model 7 cannot be interpreted separately as in the model with bilinear
incidence (Model 1). For the results in Table 2, the fitting was performed for two
time series simultaneously in a modified model with nonlinear incidence rate, so it is
necessary to consider the network and not the incidence of each city separately.

Regarding the mobility parameters, the estimated values were better than expected.
We made the adjustment in order to analyze whether the model could capture the real
movement between the locations. The values obtained for the pairs of cities: 1—Rio
de Janeiro/Niterói, 2—Rio de Janeiro/Duque de Caxias and 3—Rio de Janeiro/Nova
Iguaçu, precisely reflect the human movement between these cities as shown in Fig. 9.
For 4—Duque de Caxias/Nova Iguaçu and 5—Niterói/Itaboraí, the simulations show
a lower intensity of human movement, as it actually happens, but the values of the
parameters were a little outside of the variation range. This may occur as a result of
the lack of transport facilities that make the direct connection between cities in the
metropolitan region (shown in Fig. 9), which could increase or decrease the direct
flow among the pairs we analyzed.

Finally, we highlight that a realistic mobility network must involve several cities.
Here, we deal with a prototype model with the objective of showing that the reduction
in the order of the system can be used in an effective way to simulate indirectly
transmitted infectious disease in a small mobility network without having to deal with
vector population size and that the model with nonlinear incidence rate can be fitted
to data. These results give us an indication that human mobility actually has influence
on the spread of dengue and bring us perspectives for future studies combining more
complexmobility networks and asymptotic techniques applied to analyze vector-borne
diseases using real mobility data.
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6 Appendix

The numerical results below show that the trajectory of infected individuals from
System (9), with the estimated parameters (Table 2), converges to an endemic state
for all pairs of cities.

Fig. 7 Convergence to endemic equilibrium. The plots show the curves of infected I1 and I2 for a period
of 1000 weeks using the parameters presented in Table 2
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Fig. 7 continued

6.1 ModelWithout HumanMobility

Considering themodel SIRSm Im (System 1, shown below), we run simulations assum-
ing that each city is isolated, that is, without taking into account the flow of people
among the cities.

dS/dt = μh(Nh − S) − βSIm/Nm

dI/dt = βSIm/Nm − (γ + μh)I
dR/dt = γ I − μh R
dSm/dt = μm(Nm − Sm) − �Sm I/Nh

dIm/dt = �Sm I/Nh − μm Im

The basic reproduction number R0 for this model is obtained using the next gener-
ation matrix method van den Driessche (2017). The infected compartments are I and
Im . At the disease free equilibrium, (S, I , R, Sm, Im) = (Nh, 0, 0, Nm, 0), the matrix
F containing the appearance rates of new infections, and the matrix V with the other
transitions among the compartments, are given, respectively, by:

F =
[

0 βNh
Nm

�Nm
Nh

0

]
and V =

[
(γ + μh) 0

0 μm

]
. (6)

Finally, the expression of R0 is accomplished by calculating:

R0 = ρ(FV−1) =
√

β�

μm(γ + μh)
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Table 3 Parameters obtained by fitting the infected equation I from system 1 to dengue incidence data
from Duque de Caxias, Itaboraí, Niterói, Nova Iguaçu and Rio de Janeiro

Cities Parameters (weeks)

β � μm γ S I Sm Im R0
Duque de Caxias 8.882354 7.666129 7 7 682945 51.48 2566037 17.36 1.1788

Itaboraí 8.332454 7.567513 7 7 184748 9.70 219326 9.92 1.1344

Niterói 6.614968 11.59679 7 7 345768 21.34 976246 13.41 1.2512

Nova Iguaçu 9.593677 7.396838 7 7 616390 21.04 1595161 18.02 1.2034

Rio de Janeiro 8.461116 7.75405 7 7 5292017 175.12 12652420 174.98 1.1571

Fig. 8 Fitting the solutions I of the Model (1) to dengue incidence data for each city. Black dots show the
incidence per week, the solid lines (in purple) show the results obtained from the model, and the region
(filled with purple) is the 95% confidence interval (CI) for the variation of the observations (color figure
online)

Table (3) contains the values of the estimated parameters, and Fig. (8) shows the
fitting.
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6.2 Commuting Among Rio de Janeiro Cities

see Fig. 9

Fig. 9 Intensity of commuting for work and study in the Urban Concentration of Rio de Janeiro/RJ. The
connections in red show the absolute intensity (total of people). IBGE, 2010 Brazilian Census BRASIL
(2015) (color figure online)
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